Proposed Graduate Program of

(Student name and ID number)	
,	
Leading to the Degree of	
 _ M.S. or Ph.D. in Macromolecular Science and Engineering	
(Check one)	

Research Courses:

MACR 7994 Research and Dissertation - minimum 58 hours for Ph.D. candidates

MACR 5994 Research and Thesis - minimum 10 hours for M.S. candidates

	Semester	Dept	Course No.	Course Title	Credit Hours
I		MACR	5994/7994	Research and Thesis/Dissertation	

MACR Core Curriculum Courses:

Semester	Dept	Course No.	Course Title	Credit Hours
	MACR	5015	Macromolecular Fundamentals with Lab I	3
	MACR	5016	Macromolecular Fundamentals with Lab II	3
	CHEM/CHE/MSE	5014	Technical Oral Communications	1
	MACR	5024	Writing Skills for Macromol. Sci/Engr.	1
	MACR	5004	Graduate Seminar	1
	CHEM	5174	Polymer Viscoelasticity	3
	CHEM	5704	Syn Reac Macromolecules	3
	PHYS	5564G	Advanced Polymer Physics	3
			Subtotal	18

MACR Module Courses:

Ph.D. - 9 credit hours from one MACR module, 6 credit hours from the remaining MACR modules M.S. - 6 credit hours from one MACR module, 4 credit hours from the remaining MACR modules

Semester	Dept	Course No.	Course Title		Credit Hours
	CHE	5984	Applied Rheology		3
	CHEM	6664	Polymer Morphology		3
	CHEM	5424G	Advance Polysaccharide Chemistry		3
				Subtotal	9

General Elective Courses:

Ph.D. - 9 credit hours

I II.D 3 CIECI	n.b 9 creat nours			
Semester	Dept	Course No.	Course Title	Credit Hours
			Subtotal	9

Supporting Courses:

Must be taken for credit

IVIUST DC TUNCII	hast be taken for creat				
Semester	Dept	Course No.	Course Title	Credit Hours	
			Subtotal		

Total Credit Hours:

Advisory Committee:

		Signature	ib Number
Committee Member:	[Type NAME here]	Signature	ID Number
Committee Member:	[Type NAME here]	Signature	ID Number
Committee Member:	[Type NAME here]	Signature	ID Number
	T NAME 1	Signature	ID Number
Committee Member:	[Type NAME here]	Cignoturo	ID Mumber
Co-Chair (optional):	[Type NAME here]	Signature	ID Number
		Signature	ID Number
Chair:	[Type NAME here]		

^{**} For non-Virginia Tech committee members, please submit a Graduate Program Faculty & Additional Committee Member Registration form, found on the Graduate School's website.

MACR Courses

All students must complete the MACR core curriculum courses. Ph.D. candidates must complete 9 credit hours from one MACR module, 6 credit hours from the remaining MACR modules, and 9 credit hours of general electives. M.S. candidates must complete 6 credit hours from one MACR module and 4 credit hours from the remaining MACR modules.

Research Courses

MACR 7994 Research and Dissertation – minimum 58 hours for Ph.D. candidates MACR 5994 Research and Thesis – minimum 10 hours for M.S. candidates

CHEM	4534	Organic Chemistry of Polymers
CHEM	5704	Synthesis of Macromolecules
CHEM	6564	Current Topics in Polymer Chemistry
CHE	5984	Interfacial Chemistry and Engineering
CHEM	6664	Amorphous and Crystalline State of Polymers
SBIO	5424	Polysaccharide Chemistry

Choice of:

CHEM 5505 or 5506 Advanced Organic Chemistry
CHEM 5535 or 5536 Synthetic Organic Chemistry
CHEM 5524 Molecular Structure Determination

Structure Module

CHEM 6674/PHYS 5564G	Physical Chemistry of Polymers

CHEM/ESM 5174 Polymer Viscoelasticity

CHEM 6664 Amorphous and Crystalline State of Polymers

CHE 5984 Soft Materials and Self-Assembly
CHE 5984 Dynamic Theory of Complex Fluids
MSE 5504 Polymer Deformation and Fracture

PHYS 4564/5564G Polymer Physics

Processing Module

CHE 4224/MSE 4524		Introduction to Polymer Processing
MSE	5504	Polymer Deformation and Fracture
CHE	5984	Dynamic Theory of Complex Fluids
ESM	5514	Viscous Flow

ESM/CHSE 5564 Non-Newtonian Fluid Mechanics

Mechanics Module

Choice of:

ESM	5734	Introduction to Finite Element Analysis
ESM	4044	Mechanics of Composite Materials
ESM	5014	Introduction to Continuum Mechanics
CHEM/ESM	5174	Polymer Viscoelasticity
ESM/CHE	5564	Non-Newtonian Fluid Mechanics
ESM	5114	Viscous Flow
ESM	6104	Mechanics of Composite Strength and Life
ESM	5074	Mechanics of Laminated Composite Structures
MSE	5504	Polymer Deformation and Fracture

Adhesion and Surface Science Module

CHEM/ESM/MSE 5654		Adhesion Science
CHEM/ESM	5174	Polymer Viscoelasticity
CHEM 5644/CHE 5334G		Colloid and Surface Chemistry
CHEM 7764/PHYS 5564G		Physical Chemistry of Polymers
ESM	5264	Mechanics of Adhesive Bonding
CHEM	5524	Molecular Structure Determination
CHE	5984	Interfacial Chemistry and Engineering
CHEM	6664	Amorphous and Crystalline State of Polymers

Materials in Medicine Module

BCHM 5124 Biochemistry for the Life Sciences GRAD 5134 Polymers in Medicine and Biology

CHE 5214/BMES 5434 Polymeric Biomaterials

MSE/ESM 4574 Biomaterials

MSE 5584 Biomimetic Material Design

BMES 5984 Fundamentals of Tissue Function, Structure, and Replacement

BMES 5314 Introduction to Regenerative Medicine I

SBIO 5242 Polysaccharide Chemistry

Choice of:

CHEM 4534 Organic Chemistry of Polymers CHEM 5704 Synthesis of Macromolecules

CHEM 6564 Advanced Macromolecular Chemistry

Composites and Structures Module

Choice of:

ESM 4044 Mechanics of Composite Materials MSE 4604 Advanced Composite Materials

ESM 5074 Mechanics of Laminated Composite Structures ESM 6014 Mechanics of Composite Strength and Life

CHEM/ESM 5174 Polymer Viscoelasticity

MSE 5504 Polymer Deformation and Fracture

Micro- and Opto-electronics Module

PHYS 5984 Opto-Electronic Properties of Polymers

Choice of:

CHEM 4534 Organic Chemistry of Polymers
CHEM 4224/MSE 4524 Introduction to Polymer Processing

MSE 4554 Polymer Engineering

Choice of:

ΕE

5144 Introduction to Electro-Optics

MSE 5214 Opto-Electronics/Magnetic Applications
PHYS 5614 Introduction to Quantum Electronics